ABC Conjecture

Time limit: $\quad 3$ seconds
The ABC conjecture (also known as the Oesterlé-Masser conjecture) is a famous conjecture in number theory, first proposed by Joseph Oesterlé and David Masser. It is formally stated as follows:

For every positive real number ε, there are only finitely many positive integer triples (a, b, c) such that

1. a and b are relatively prime;
2. $a+b=c$; and
3. $c>\operatorname{rad}(a b c)^{1+\varepsilon}$,
where

$$
\operatorname{rad}(n)=\prod_{\substack{p \mid n \\ p \in \operatorname{Prime}}} p
$$

Figure 1: Shinichi Mochizuki
is the product of all distinct prime divisors of n.
Shinichi Mochizuki claimed to have proven this conjecture in August 2012. Later, Mochizuki's claimed proof was announced to be published in Publications of the Research Institute for Mathematical Sciences (RIMS), a journal of which Mochizuki is the chief editor.
Spike is a great fan of number theory and wanted to prove the ABC conjecture as well. However, due to his inability, he turned to work on a weaker version of the ABC conjecture, which is formally stated as follows:

Given a positive integer c, determine if there exists positive integers a, b, such that $a+b=c$ and $\operatorname{rad}(a b c)<c$.

Note that in the original ABC conjecture, the positive integers a and b are required to be relatively prime. However, as Spike is solving an easier version of the problem, this requirement is removed.

Input

The first line of input contains one integer $T(1 \leq T \leq 10)$, the number of test cases.
The next lines contain description of the t test cases. Each test case contains one line, including an integer c $\left(1 \leq c \leq 10^{18}\right)$.

Output

For each test case, if there exist two positive integers a, b satisfying $a+b=c$ and $\operatorname{rad}(a b c)<c$, then output yes in a line, otherwise output no instead.

Example

standard input	standard output
3	yes
4	yes
30	no

Note

For the first test case, we have $2+2=4$ and $\operatorname{rad}(2 \times 2 \times 4)=2<4$.
For the second test case, we have $6+12=18$ and $\operatorname{rad}(6 \times 12 \times 18)=6<18$.
For the third test case, there's no solution.

