New Queries On Segment Deluxe

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
1024 megabytes

You know those problems where you are given an array of length roughly 10^{5} and you have to process roughly 10^{5} queries about something on a segment? Yes, this is one of those problems. And it should be persistent, because why not.
Consider $k \times n$ matrix A (with k rows and n columns). For a given matrix we can construct the array B as follows: $B_{j}=\sum_{i=1}^{k} A_{i j}$.
There will be up to $q+1$ versions of the matrix. The j-th element in i-th row of t-th version of A is denoted as $A_{i j}^{(t)}$. The j-th element of the array B corresponding to t-th version of A is denoted as $B_{j}^{(t)}$. You are given the 0 -th version of the matrix A. You have to process q queries of 3 types:

- 1 t plrx: add x to $A_{p i}^{(t)}$ for $l \leq i \leq r$, thus creating a new version of the matrix
- 2 t plry : set $A_{p i}^{(t)}$ to be equal to y for $l \leq i \leq r$, thus creating a new version of the matrix
- 3 t l r: print $\min _{i=l}^{r} B_{i}^{(t)}$

The version of the matrix A created after the i-th query will be called the i-th version. Thus version numbers can be from 0 to q inclusive, but some of the integers from 0 to q may not have the correspondent version.

Input

The first line of input contains 3 integers $k, n, q(1 \leq k \leq 4,1 \leq n \leq 250000,1 \leq q \leq 20000)$ - the dimensions of the matrix and the number of queries respectively.
The i-th of the next k lines contains n integers $A_{i 1}^{(0)}, A_{i 2}^{(0)}, \ldots, A_{i n}^{(0)}\left(\left|A_{i j}^{(0)}\right| \leq 10^{8}\right)$.
The next q lines describe the queries in the format explained earlier. It is guaranteed that t refers to a valid already existing version of the matrix, $1 \leq p \leq k, 1 \leq l \leq r \leq n,|x| \leq 10^{4},|y| \leq 10^{8}$.
It is guaranteed that there exists at least one query of type 3 .

Output

Print the answers to the queries of type 3 in the order in which the queries were given, on separate lines.

Example

		standard input		standard output
2	5	8		7
1	2	3	4	5
10	8	6	4	2

Note

Here is how the versions of the matrix will look like:

The number in a circle is the version, the numbers in rhombuses are queries of type 3 .

