{"trustable":true,"sections":[{"title":"","value":{"format":"MD","content":"In mathematics, the **n\u003csup\u003eth\u003c/sup\u003e** harmonic number is the sum of the reciprocals of the first **n** natural numbers:\n\n$$H_n \u003d 1 + \\frac{1}{2} + \\frac{1}{3} + \\frac{1}{4} + \\ldots + \\frac{1}{n}$$\n\n$$\u003d \\sum_{k \u003d 1}^n \\frac{1}{k}$$\n\nIn this problem, you are given **n**, you have to find **H\u003csub\u003en\u003c/sub\u003e**."}},{"title":"Input","value":{"format":"MD","content":"Input starts with an integer **T (\u0026#8804; 10000)**, denoting the number of test cases.\n\nEach case starts with a line containing an integer **n (1 \u0026#8804; n \u0026#8804; 10\u003csup\u003e8\u003c/sup\u003e)**."}},{"title":"Output","value":{"format":"MD","content":"For each case, print the case number and the **n\u003csup\u003eth\u003c/sup\u003e** harmonic number. Errors less than **10\u003csup\u003e-8\u003c/sup\u003e** will be ignored."}},{"title":"Sample","value":{"format":"HTML","content":"\u003ctable class\u003d\u0027vjudge_sample\u0027\u003e\n\u003cthead\u003e\n \u003ctr\u003e\n \u003cth\u003eInput\u003c/th\u003e\n \u003cth\u003eOutput\u003c/th\u003e\n \u003c/tr\u003e\n\u003c/thead\u003e\n\u003ctbody\u003e\n \u003ctr\u003e\n \u003ctd\u003e\u003cpre\u003e12\n1\n2\n3\n4\n5\n6\n7\n8\n9\n90000000\n99999999\n100000000\n\u003c/pre\u003e\u003c/td\u003e\n \u003ctd\u003e\u003cpre\u003eCase 1: 1\nCase 2: 1.5\nCase 3: 1.8333333333\nCase 4: 2.0833333333\nCase 5: 2.2833333333\nCase 6: 2.450\nCase 7: 2.5928571429\nCase 8: 2.7178571429\nCase 9: 2.8289682540\nCase 10: 18.8925358988\nCase 11: 18.9978964039\nCase 12: 18.9978964139\n\u003c/pre\u003e\u003c/td\u003e\n \u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n"}}]}