{"trustable":false,"prependHtml":"","sections":[{"title":"","value":{"format":"HTML","content":"\u003cp\u003e\nAs the coolest boy in IUT, you know that it\u0027s easy to see that for every fraction in the form \u003ci\u003e\u003csup\u003e1\u003c/sup\u003e/\u003csub\u003eK\u003c/sub\u003e where (k \u003e 0)\u003c/i\u003e, we can always find two positive integers\n\u003ci\u003ex\u003c/i\u003e and \u003ci\u003ey, x ≥ y\u003c/i\u003e, such that:\n\u003c/p\u003e\n\n\u003cpre\u003e\n\u003ci\u003e\u003csup\u003e1\u003c/sup\u003e/\u003csub\u003eK\u003c/sub\u003e \u003d \u003csup\u003e1\u003c/sup\u003e/\u003csub\u003ex\u003c/sub\u003e + \u003csup\u003e1\u003c/sup\u003e/\u003csub\u003ey\u003c/sub\u003e\u003c/i\u003e\n\u003c/pre\u003e\n\n\u003cp\u003e\nNow you want to write a program that counts how many such pairs of \u003ci\u003ex\u003c/i\u003e and \u003ci\u003ey\u003c/i\u003e there\nare for any given \u003ci\u003ek\u003c/i\u003e? Can you find it? \n\u003c/p\u003e\n"}},{"title":"INPUT","value":{"format":"HTML","content":"\u003cp\u003e\nInput contains no more than 100 lines, each giving a value of \u003ci\u003ek (0 \u003c k ≤ 10000)\u003c/i\u003e.\n\u003c/p\u003e"}},{"title":"OUTPUT","value":{"format":"HTML","content":"\u003cp\u003e\nFor each \u003ci\u003ek\u003c/i\u003e, output the number of corresponding \u003ci\u003e(x, y)\u003c/i\u003e pairs, followed by a sorted list of the values of\n\u003ci\u003ex\u003c/i\u003e and \u003ci\u003ey\u003c/i\u003e, as shown in the sample output.\n\u003c/p\u003e"}},{"title":"SAMPLE INPUT","value":{"format":"HTML","content":"\u003cpre\u003e\n2\n12\n\u003c/pre\u003e"}},{"title":"SAMPLE OUTPUT","value":{"format":"HTML","content":"\u003cpre\u003e\n2\n1/2 \u003d 1/6 + 1/3\n1/2 \u003d 1/4 + 1/4\n8\n1/12 \u003d 1/156 + 1/13\n1/12 \u003d 1/84 + 1/14\n1/12 \u003d 1/60 + 1/15\n1/12 \u003d 1/48 + 1/16\n1/12 \u003d 1/36 + 1/18\n1/12 \u003d 1/30 + 1/20\n1/12 \u003d 1/28 + 1/21\n1/12 \u003d 1/24 + 1/24\n\u003c/pre\u003e"}}]}